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On the Supremacy of Viscosity in the Control

of Turbulent Fluid Motion.

Summary:

Even for Reynolds numbers not small, the dynamic

effects including the dynamic velocity terms and the

pressure terms enumerated in the Navier Stokes equation

exert small average effects on the turbulence features

when compared with the effects of viscosity.

This new finding points to the linearization

of the turbulence problem. Non-linear effects of the

statistical deviations from the random distribution,

however, are not insignificent.

The theory is applied to the determination of the ratio

of the two intensities of turbulence mixing, the one being the

shear mixing and the other the energy diffusion mixing.
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I. Introduction.

The turbulent fluid motion presents a problem in statistics.

It must be the aim of any real turbulence theory to sift experi-

mental and theoretical knowledge to the utmost, so that we may be

able to predict a small number of relevant averages by the use of

as small a number of averaged variables as possible.

We have shown in Ref. (m) that even the restriction to three

such variables affords a good insight into the general features of

turbulent fluid motion. This encourages us to go forward in the

chosen direction. The present paper deals with refinements of the

mathematical procedure. It brings our approach in line with the

branch of the current literature generally summed up as "statisti-

cal theory of turbulence." This is not difficult in principle be-

cause an average lump flow is not quite unrelated to the components

of the velocity correlation dyadic. The lump picture and the abstract

correlation view are in harmony with each other. The correlations

appeal more to the abstract mathematician. The lumps seem to offer

more hope of progress to the physicist who is aware of the danger

of pitfalls of pure abstract reasoting.

Time and space forbids-us to present a self-contained account

of the current statistical approach. The following is accordingly

directed to readers who are reasonably acquainted with at lEast the

two pioneer papers on the subject, by G.I. Taylor and Theodore von

Karmani. Ref. (t) and (k). A relatively recent account by Agostini

may also betconsulted with profit. It gives a good idea about the

tN
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present status of the theory, about its satisfactory aspects as well

as its weak ones. An excellent translation of Agostini's paper has

been made by J. Vanier, and is readily available. Ref. (a).

.I.ur The postulates of the statistical'theory.

All postulates employed in the statistical theory of turbulence

can be classified under the heading of three different principles.

They flow either from the physical theory, or from an attempt to sepa-

rate a turbulence motion from a basic motion, or lastly from some kind

of artificial soecialization.

The physical theory by itself is not uncertain nor controver-

sial. It is exhaustively laid down in the Navier Stokes equations

in combination with the equation of continuity. It is implied that

the solutions deoend also and in a most oronounced way on the boundary

conditions clearly necessary or merely assumed. The Navier Stokes

equations are ordinarily stated .ith reference to incompressible fluids

only. When adopted in that special form, it is out of place to specu-

late again whether the fluid is assumed to be incompressible or not.
smooth

The division of the actual flow into a basicA flow and a turbu-

lence flow is quite generally resorted to. But it is not always

realized that this division 1P not unique. It will not do just to

say that the basic flow is the average, and the turbulence flow is what

remains over and above the average. That is not precise enough. The

division has also to include the boundary conditions. Also the

averaging process can be carried out in more than one manner and to

different degree and intensity. There is in fact no sharp demarca-

tion line between the turbulence flow and the basic flow. If we
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carry the averaging too far all motion becomes turbulence motion. If

not far enough, the basic flow remains too involved.

Specialization, such as to homogeneous flows and to isotropic

turbulence, is resorted to for dividing the difficulties of the

problem. It is attempted to inwestigate in that fashion different

aspects of turbulence by themselves. This is done with the expecta-

tion that later these different effects may be combined or superposed

to each other in some simple way. This subdivision and the postulates

necessary to effect it are again not unique nor precise, but they are

particularly tricky and readily lead to gapsin the logical procedure.

An orderly progress in the presentXly discussed theory requires

that the postulates necessary for applying these three principles

be introduced gradually and with greatest care. The decision5 should

be delayed until they become immediately necessary in each individual

case.. That particular case serves then for illustrating and explain-

ing the scope of the postulate. It leads only to confusion if some

so-called definition is accepted as a dogma to serve as the basis of

the consequent research. The mathematical procedure includes then

"proving" that certain relations hold by trying to demonstrate that

they conform with the perhaps ambiguously stated or prematurely

adopted definition.

It may seem strange that such reserved attitude should also be

necessary with regard to the physical theory, which stands establish-

ed certain and rigid. But the boundary conditions are a matter of

discretion, and cannot be established without regard to physics. Navier

Stokes Stokes equations do not determine the boundary conditions.

-I
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Said equations are precise when applied to specific solutions. But

there is no solution to apply them to. It is the very nature of the

turbulence problem that the precise solution must forever remain un-

known and unstated, The application of the equations in such case~s

requires mental steps not apparent from the equations. The formu-

lated equations stand for broad principles, not for a narrow numer-

ical procedure. A full grasp of all implications of the equations

has to be constantly resorted to.

All applied statistical theory is attended with some lack of

rigour. Thus for instance, the standard or Gaussian distribution is

often used even if it it not the true distribution. The theory deals

with incomplete, scant and uncertain data, and conclusions regarding

a shape have, so to 6ptak, to be drawn from its vague shadow. Under

such circumstcnces we cannot afford over-fine mathematical distinct-

ions to stand in the way ot using quite workable and practical propo-

sitions, unprovable as they may be. The door to ingenuous and shrewd

guesses must not be closed. Simplifying assumptions should not be

rejected for lack of mathematical rigours unless it is demonstrated

that they lead to unacceptable conclusions. In such manner was the

kinetic theory of gases developed. The turbulence problem is a much

humbler problem, having no significance by itself but only having a

significance on account of engineering needs. Certainly, what is good K

enough for fundamental physics is good enough for turbulence research.
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III. The correlation flow.

The correlation flow is obtained by a scalar*multiplication

of the correlation dyadic (tensor of second rank)

i o

R Is the correlation dyadic u; v, where the semicolon has no signi-

ficcnce beyond that of the empty space ordilaarily employed for

indicating tensor multiplication. The symbol "i" denotes a unit vector.

An entire tensor field R is associated with each point of the space.

Each field is in the associated space, and only v but not u varies

in this space. All variablea depend besides on time,all averages

are time averages. The divergence is zero

because averaging leaves absence of divergence unchanged.

It is always postulated that the turbulence is reasonably

homogeneous so that the changes of the averages through the territory

of one lump are negligibly small when compared with the averages

themselves. This postulate is often unrealistic.

The present discussion is restricted throughout to homogeneous

and incompressible fluids. The correlation flow is the average of

the turbulence motion at one point provided the average is only taken

while the velocity at that point is reasonably near to one predeter-

mined directi.on. That is certainly so for isotropic turbulence. We

see or apsume that the correlation flow possesses a number of symmetric

features. It is ordinarily assumed to posse-s's an axis of symmetry

i
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parallel to the central velocity. ThIs does not mean yet isotropic

turbulence. We shall see or assume that the correlation flow possess-

es a number of symmetric features. It is ordinarily assumed to possess

an axis of symmetry parallel to the central velocity. This does not

mean yet isotropic turbulence. Only if the correlation flow is the

same for all directiohn is the turbulence isotropic. We hope to be able

to reach tangible results even in the case that the turbulence is only

approximately a-d merely to some degree isotropic, by Using suitable

averages of the correlation flows in different directions.

The correlation flows reach theorically up to the infinity.

They converge rapidly to zero, aS we shall discuss in fuller detail

in Section 5. Still it is impossible to assign a sharp boundary up to

which the flows actively reach. A similar situation was already faced

with our Hill vortices in Ref. (m), and is quite common in applied

physics.

There is a separate field or space function of correlation

dyadics and therefore also one of correlation flows for each point.

In that respect the correlation flow is different from the lump flow.

Also lumps have a physical reality, but correlations are merely prob-

ability weight functions. They change with the change of the entire

flow but they have no IndIvidual history, because they have no in-

dividual physical existence. Thus, in a quasi-steady turbulent flow

the correlations and therefore the correlation flows do not change

The iniividual lumps change each by themselve's even their average



.6. III

never changes. The lump flow has always a history of chsnge. It is

the plan of our inquiry to study the average history of the individual

lump flows aS already done in Ref. (m).

The average lump flows are closely related to the core or inner

portion of the correlation flow. The two are not strictly identical

but they suggest each other. The lump flows, even the average lump

flows, are a physical reality and it is not obvious that a certain

correlation flow corresponds to one lump flow only. The study of

such detail questions is however contrary to the plan of a statistical

approach. We shall never know either of the two flows with any pre-

cision. The distinction does not appear relevant at this state of the

inquiry.

We plan to disregard the distinctions between the core of

the correlation flow and the lump flow , except for a proportionality

factor for the velocity magnitudes. The strength of the lump flow

in relation to the strength or energy density of the turbulence de-

pends on the average lump distance. We plan to present an inquiry

about that in a later paper. The present paper deals with the

supremacy of the viscosity only.

4i

I',

V?



.7. IV

IV. Correlation dynamics

In current literature on the statistical theory of turbulence

the term "dynamics" designates the study of the time changes of the

correlation dyadic of pairs of simultaneous velocities. If the flow

is quasi-steady, there Is not any such change. But the theory is

mostly applied to isotropic turbulence. Then the turbulence always

decays and the correlation dyadic changes.

The fluid has to rely on pressure effects for the preservation

of density. The current literature notes that nevertheless, for

isotropic turbulence, the pressure terms of the Navier Stokes equation

cancel out by averaging, and leave no trace in the equation describing

the history of the correlation. The correlation dyadic undergoes

changes just as if there were no pressures acting. This propo-

sition is ordinarily accepted on the authority of von Karman,

KRef.(k). The proof or demonstration given there seems to be not
generally accepted. Most authors do not discuss this point. Agostini,

Ref. (a), page 69, discusses the disap'earance of the scalar product

of the velocity and the pressure gradient, not their dyadic product.

Both products show equal response or non-response to the pressure.

Agostini does not accept the proposition. A few pages later, Ref.(a)

P. 75, he says: "When assuming the disappearance of the pressure term

to have proved." In effect he repudiates with these words the proof

he has himself offered and rejects the different proof of von Karman

which he must have studied carefully. The present author, while

realizing that Ref. (k) Section 7 is perhaps not quite as lucid as it

could be in view of the simplicity and directness of the reasoning

presented, still does not find any error or fault either in the



.8. IV

postulates emplOyed nor in the rather primitive and elementary steps

taken. The pressure tbrms do disappear. It is however noted that the

demonstration in said Section 7 holds equally for any other scalar

variable subject to the condition of statistical isotropy. Nothing

is introduced in Section 7 having reference to the scalar

representing the pressure. This widens the scope of application of

the result of Section 7 in that it applies to all isotropic scalar

variables, but it also narrows it unnecessarily in that it restricts

the disappearance of the correlation dyadic to a product of the

velocity and of a vector belonging to an irrotational vectOr field.

The final outcome appears in quite a different light when

relying more on physical grounds and less on mere geometry and

postulates. The pressure terfhs are then seen to average out without

havixg to rely on pressure gradients being derived from a scalar

potential. They average out for a much broader reason, namely because

the pressure is an even function of the velocity. If all turbulence

velocities are permitted to be reversed, the pressure distribution

would remain what it was before, without change of sign. It is there-

fore reasonable to assume that for each pressure value all velocities

occur as often in one direction and magnitude as in the opposite

direction and the same magnitude. This leads immediately to the

disappearance of the pressure-velocity correlation gradient. Neither

a potential of the pressurp force, nor isotropy of the turbulence motion

is necessary for proof. Now, bhi8 apparently new mode of reasoning

J
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is of larger significance than just furnishing a new proof for an

old and long accepted propqsitiIn. It widens the scope of appli-

cation to les-s restricted turbulence and to other terms of the

equation. It directs our attention to the remaining dynamic pres-

sure terms of the Navier Stokes equation. They can be written

K °and they are also an even function of the velocity.

Exactly the same reasoning that holds for the pressure terms applies

also to the dynamic velocity terms. These terms will also cancel

out on the average for the history of the correlation dyadic and of

correlation flow. That puts the theory in an entirely new light.

Only the viscosity terms remain, governing the correlation dyadic

. and the correlation flow, even if the

Reynolds number Is not particularly small.

Retaining merely the viscosity term was already considered by

von Karman, Ref. (k) Section 10, but expressly restricted to "small

Reynolds numbers." We see now that the supremacy of the viscosity

is quite general. Agostini, Ref. (a) Section 20, also discusses

this discounting of the dynamic velocity terms, but with apology

and little faith, He defends it by stating thot it is mathematic-

ally convenient but physically quite difficult to justify. He over-

looked the physical justification presented in the present section

believing rather that there was none.

The correlation distribution is thus seen to be subject to

a linear differential equation. This situation must however not

be accepted without reservation. What happens in the turbulence

Ni
pl
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flow does not depend merely on the probability distribution but also

on the deviations from that probability. Secondary devistion effects

must not be overlooked. Section 7 of this paper illustrates this I

remark.

V. The correlation flow at large distances.

It is necessary to clarify the meaning of the total momentum

integral, that is the,8pac Integral of the correlation velocity

vector,

5-1

the integration extending through the entire space. Also that of

the space integral for the total polar moment of inertia of the

correlation velocity,

5 -2

where v denotes the velocity, r denotes the radial distance from

the center, and dS denotes the space elements.

With one Hill vortex or with a similar correlation flow the

velocities decline as the cube of the radial distance r. Hence the

momentum integral (5-1) does not converge. Its value depends on

the order in which the integration is carried out, and on the

specification for the infinitely far boundary. Integral (5-2)

would even less converge.

We have to look deeper into this question of convergence. We

must call to mind that we are facing not one single lump but an

infinite assembly of lumps, moving in some random fashion about in

the fluid. Their distribution is not entirely random in that there is

a bias or correlation between the motion of adjaoent lumps. This is

_ _ _ _ __ _ _ __ _ _ _
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the case by reason of the physica. laws governing what happened in

the past. Individual lumps have only a short life span, and they

are all created by the action of the same pressure distribution.

The momentum of the fluid is not changed but merely redistributed.

In consequence each lump traveling in one direction is surrounded

by a group of lumps having on the average a total momentum in the

opposite direction. Hence, the correlation spreads out far beyond

the territory of the lump. Also this momentum is evenly distributed

around the first mentioned lump. There is no upper limit for the

statistical symmetry thus established. In consequence, the corre-

lation velocity declines much faster than inverse to the third power

of the distance. It would at least decline with the fifth poweri
which

but there is no upper limit of the exponent m by the velocity may

decline with the distance. An exponential law k seems appro-

priate and acceptable.

This must not be taken too literally. The sense of reality

must be preserved. The higher the power, the slower the convergence,

and the larger the deviation from the mean. It will require a longer

and longer time to obtain the average and larger space too. The

average space integrals become very unreal as the power m goes up.

It is impossible to determine them experimentally. But fbr the

following we do not have to go very high with the exponent m. In V
consequence of this physical reasoning we feel justified in postulating

thpt all correlation integralt occurrving converge at large distance

from the origin.
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VI. On the preservation of the lump flow.

Additional comment regarding the minor part played by the

inertia effects in the turbulence theory seems to be called for.

*It S clear that each indiVlVual' lump is attended by a pressure

distribution and by inertia effects. We have already pointed out

in qection 4 why these inertia effects are secondary with regard
a

to average effects. We would like to show this ini more tangible

way using the physical picture of one lump undergoing changes.

If a lump, under the action of inertia only, preserves its

compactness, the flow picture will, to some extent, be more or less

periodical, and therefore its time average will be constant. The

basic question is accordingly whether a c'difpact lump flow, of the

type considered, which is a generalized vortex ring in a non-viscous

fluid similar to the Hill vortex of Ref. (m) remains compact. The

opposite would be that the vortices spread out to become distributed

through a larger and larger territory, i.e. in the absence of viscosity.

. the vortex rings of the correlation flow occur equally in both

directions but the vortex rings of the lumps are predominantly in one

direction. The vorticity distribution through the outer territory

of the correlation flow can not count for the liAnp, because that

consist' of Many lumps rather than of an even and gradual distribution

of vorticity. Now in absence of viscosity effects, the total energy

of the lump flow must remain constant. The total kinetic energy of

the flow depend6 on the compactness of the vortex distribution.

The wider the same vortex lines are scattered and distributed, the

smaller is the kinetic energy of the flow. Ref (1) Section 153.

It follows therefore from the
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energy principle together with the fact that predominately only

vortex rings of the same direction are involved, that the lump flow

must remain compact. It is therefore statistically self-preserving,

except for viscosity effects.

VII. Diffusion

We are interested in the diffusion of a quantity that iS con-

centrated in the vicinity of a point so that it converges towards zero

within reasonable distance frot that Doint, as described in Section 5.

We have to distinguish between the case that the space integral of

the quantity is zero 7-1 d.5 0

and when it iS not. If the space integral is zero, the moment of inertia

of the quantity is constant

7- 2fl = const

This follows from applying the diffusion equation

to(74.)and applying Green's theorem, two times in succession.

The surface integrals vanish in consequence of the assUmptions made

regarding the decline of the quantity with increasing distance,

Section 5. Hence we obtain (7-2). More general, the first moment V
computed with the (211)th power of r not being zero will remain

constant. It is practically sufficient for obtaining (7-2), that

(7-1) be very small, that is that the Reynolds number(iz) /

be large where L and t denote rOsoctively the largest distance Pnd

the largest time span involved in the experlment.

X
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We have to distinguish between the moment of inertia of the

quantity being fitite or ero. There exist type preserving distributions

of finite magnitud6 of the monqent of inertia. They are the fundamental

or dominating term of a combilpation of type p'erserving functions.

They are ihe ones having a finite moment of inertia. The other ones

have the moment of inertia zero.

Ifl These distributions, type-perserving under the action of viscosity

only, have already been introduced into the theory in Ref. (k).

However, they were only introduced fo-b small Reynolds numbers. r

We see now that their field of usefulness is much broader. This

statistically determined effect of viscosity brings this about. For

the time being, and quite possibly for all time, it is necessary

to restrict ourselves to using one prototype flow to serve once for

all as correlation flow, and also by way of its inner part, as pro-

totype lump flow. Going into the detils of more than one lump

flow seems to be quite at variance with the policy of a statistical

approach. The orototype flow would take the place of the Hill vortex

in Ref. ( )

The dominant influence of the viscosity demonstrated in Section

4 calls distinctly for the choice of a prototype flow self-preserving

in type under viscosity effects, not under dynamic effect as the

Hill vortex is. The first choice would naturally be the above funda-

mental self-preserving flow, having a finite moment of the velocity.

This flow has also already appealed to the authors of Ref. (k) and

(a) and has there,at leas been alluded to. This tends to show that

4' 
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the supremacy of the turbulence was intuitively felt for many years.

But it was not distinctly'recognized nor broadly, confidently and

cheerfully proposed.

We proceed to"give some detail specification for this apparent-

ii popular and promising prototype flow.

,yiII. The orototye flow.

The flow is of axial symmetry, and is symmetric fore and aft. K

It can be described in a meridian plane using polar coordinates r

and the origin of the coordinate syotem coinciding with the- lump

center-. The distance from the axis of symmetry is then given by

r sin9 9

The flow has the radial component of the velocity v

7-1 -/Cc e
and a tangential velocity component at right angles to the radius

I - S,1Ii
The vorticity of the flow is in consequence

ahd thus its ratio to the vxial distance r n 40 is

This is constant over the surface of all concentric spheres

r const.

The axial velocity component is zero at all points of a

cylinder having unit distance from the axis of symmetry. All spheres

about the origin are surfaces of normal velocity components proOortional

to cos
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The flow shares this property with the surface of the Hill vortex.

The momentum integral of the correlation flow converges, and

the total momentum is zero. ThE specification for this unit corre-

lation flow describes only the type, but not the intensity. It

does not indicate the specific kinetic energy of the turbulence

flow. That depends on the intensity of the correlation flow, hamely

on the magnitude of its central velocity, at r = 0.

There are several reference lengths available for the corre-

lation flow of the type (7-1, (7-2), the microscale j of the

unit flow, Ref. (t) is equal to !. The square of the radius of

the sphere dividing the points of positive vorticity from those of

negative vorticity is equal to 2.5. At the surface of that sphere,

the vorticity is zero.

The outer portion of the correlation flow merely describes

the statistical behavior of many adjacent lumps. The inner portions,

the core, describes one average lump. The description is particular-

ly immediate near the center. How far the territory of one lump extends

depends on how many lumps there are per unit volume. That depends

on the aircumstance8 of the flow problem. Broadly spoken, the lumps

have a tendency to swell out by viscosity effects until they come

so clQse to each other that the mutual viscosity prevents further

swelling Out, The Reynolds number of the lump enters this picture.

If the Reynolds number of the lumps becomes too large, each lump

becomes a basic flow for smaller lumps. This points to an upper limit

of the lump Reynolds number. All this will be discussed and computed,

or at least estimated in a subsequent paper.

_ _ _ _ _ _ _ _ _ _ _ _. ..... ... . ..... .......... _ _ _ _ __..... . .... .
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IX. Turbulence decay.

Decaying turbulende i by no means the principal problem of

tubulence rtseatci. Quasi-steady turbulence iS much more important.

The decaying turbulence is however always prominently featured in the

litemture on the subJect, because it is the only turbulence problem

with respect to which some meager and incomplete theoretical results

have been presented. Experimental information in that special field

is also available.

Only two extreme cases are treated theoretically, the initial

stage of turbulence decay and its final stage. The result regarding

the initial stage is more acceptable than the other result.

The initial motion is considered to be a cluster of many

smaller lumps, the cluster lump flow being the basic flow for the

true lumps. The smaller lumps take the energy out of the cluster

and dissipate it soon, so that the asymptotic history of the energy

density can be obtained frot thd energy of the cluster or gross motion.

The clusters are thinly distributed and therefore do not interfere wih

each other.

Under all these circumstances there is an analogy between the

velocity of an ordinary lump and the energy of the cluster motion.

Both are subject to ordinary diffusion. The shear mixing M is the

analogue to the kinemati viscosity . It happens thet the final

result is consistent with a constant mixing intensity, in that the

Reynolds number of the small lumps does not change. The linear size

increases proportional to the square 9ioot of the time, and the velocity,

as we shall see, decreases inversely to the same.
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While the space inteiral of the cluster energy EdS

is not zero, the energy being a paSitive quantity, still the rate of

decline of its moment of inertia Is small. It is regligibl6.in c6mparison

with its own magnitude, be~ause r2 /(t2) is large, r denoting the

iimp size and the t the time available. Under these circumstances,

the moment of inertia of the energy does not change noticeably.

Considering it to be dominantly contributed by a standard self-pre-

serving diffusion distribution of finite moment of momentum of the

energy, the energy at the cluster center would decline proportional
-2.5 -1.5

to t . But the cluster volume would increase proportional to t

so that the total energy per unit slace would appear to be inverse

to a linear function of the time. This is the result displayed in

the literature and it seems to be confirmed experimentally. There

are quiV a number of assumptions or limiting conditions involved, but

they can all be reasonably juStified.

The opposite case is conside'red the final stage of decay. The

current theory considers that then viscosity is supreme by reason

of the small Reynolds numbers prevailing. That is hardly any longer

turbulence, but is of interest ap the asymptotic end of turbulence.rI
Theory considers that unlimited space is available, also unlimited

time to spread randohness all through this infinite space. The un-

eveness of the fluid motion assumes bigger and bigger scale, without

limit. There retain always clustert,, bigger and bigger in that the

biggest clusters are decayr~n a the slowest rate. In accordance

with the reasoning pjesented in Section 7, the energy decay will

therefore be finally inverse to the 2.5th power of the time.
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Will it really? What hanpens f inblly depends pntirely on the

boundary conditions in their widest sense including space and time.

Prectioally there will always b&'an eneviy supply by way of some

noise effect. The decay will then be finally zero. If on the other

hand, the fluid is surrounded by 2igid energy-proof Walls, the

decay will finally be exponential. Th6 decay exponent will increase

from its initial value -1 because the turbfilence becomes more crowded.

It is not unusual nor unreasonable to expect that -2.5 will be reached

and even surpassed. The question is whether the transient expondent

-2.5 is less transient than the adjacent exponents, so that the decay

curve is in particularly intimate contact with a parabola correspond-

ing to thvt exponent.

If there are good reasons to expect that, then the finding

of the present paper would make the exponent -2.5 even more

acceptable in that the requirement for a small Reynolds number would

be less severe.

The necessary condition for a good degree of preservation of

the exponent -2.5 is that there are closely packed lump clusters

and that there is furthermore enough space and a supply of even wider

spread velocity configurations or deviations to become the feeding

cluster flows for the lerss spread-out ones.

The semi-permanency of the exponent -2.5 can not bd decisively

indicated by erperimental evidence. The precisiOn Of the tests is not

large enough. There is however some experimental evidence to show

that the exponent associated with the weakest energy intensity

measureable is not inconsistent with an exponent of decay i=-25.
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X. The ratio of the shear intensities.

Any statistical approa~h td the turbulence problem must have

as its immediate aim the theoretical determination 'of the intensities

of turbulence mixing. Thi9smix1tg, .i not the primary subject of the

present paper. The dIscusOon of the relative weight of the viscosity

effects and of the inertia effects must precede such det6rmination.

The determination of the intensity Of mixing is a subject which

requires its own study and its own paper. However, to offer in this

paper at least some advance in the direction of that determination,

we will conclude it with the discussion of the ratio of the shear

mixing to the mixing for energy diffusion. That these two are

lifferent from each other, and why, will appear clearly in the follow-

ing deduction. It will also appear that the general form used by

us in Ref. (m) is consistent with the one immediately to be derived

for the two mixing intensities. The present paper justifies thus the

reasoning of this author in his orevious paper on the subject.

The shear mixing expresses the transport of flow-wise momentum

by the lumps crossing the shear or gliding surfaces. If the average

K velocity of the turbulence flow i6u_,the °'the flux of the fluid

crossing in one or the other directions is approximately u/3. The

momentum it transports depends on the penetration depth. This is

somewhat analogous to the mean free path of the kinetic gas theory,

but not closely analogous. We discussed this already in Ref. (m)

and see now clearer for what reason the penetration depth f does not

dominantly depend on random effe-cts bu-.on 1vS.cosity effects.

. ". -.4
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The velocity of a lump decreases with time. The rate of
-i

decrease is at least proportional to t, , which is for lumps spaced

far apart from each other. IA a quasi-steady shear flow, the lumps

are not spaced far apart, bUt on the contrary, they, must be considered

closely packed. In that case, as discussed in Section 7, the reference
-2.5.

velocities decrease proportional to t Yhis time, t, has to be

counted from an initial time point, such that at the time of the cross-

ing t = to = constjj/ wh'ere denotes any

reference length, Such as for Instanc- the microscale.

Hence, the pejetration depth f result-s roportional to

Hence the shear mixing is proportional to

This is exactly the form proposed in Ref. (m).

For the diffusion of the energy we obtain a factor different

from this. As the lump penetrates into a layer of different energy

level, it does not really transport its energy that fLr, because

much of it has been dissipated on the way. Hence an applicable

penetration depth will be obtained, not by integrati.n the velocity,

but by by integrating its product with the energy still carried, and

dividing the oitcoffe by the initial energy. Thus

is
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Hence it is demonstrated that the diffution mixing is much smaller

than the shear mixing. The ratio is about 3/13.

The smaller diffusion mixing would leave the influence of

the secondary augumentation pronounced. However, the present

derivation is based on the assumption that the lumps move straight

ahead on the average. We have to examine how far that assumption

is justifiable in shear flow.



p

List of References.

(a) L. Agostini and J. Bass: The Theories of Turbulence.
Translation N.A.C.A., T.M. 1377.

(k) Theodore von Karman and L Howarth: On the Statistical
Theory of Turbulence.
Proc. Roy. Soc. A 164, 1938 p. 102

(1) Horace Lamb; Hydrodynamics
Sixth Ed. Dover Publications, N.Y.

(m) Max M. Munk: A Simplified Theory of Turbulent Fluid
Motion, Part 1

The Catholic University of America 1955.

(t) G.I. Taylor: Statistical Theory of Turbulence.
Proc. Roy. Soc. A 151 1935 p. 421.

wX&.



Srmed Services lec nca ofoiao g cy
Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property o the United States Government. It is furnished for the du-
ration of the contract and shall be returned when no longer required, or upon recall by ASTIA
to the following address: Armed Services Technical Information Agency,
Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
IR-BD FOR ANY PURPOSE OTHER THAN IN CONNECTION wrrH A DEFINITELY RXFIATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT TYEREBY INC31S.
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT T-I' .
GOVERNMENT MAY HAVE'FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE !
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTAER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUF4CTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED


